Model

A brief introduction & Applications
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What is Diffusion Model?

Denoising Diffusion Probabilistic Models
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What is Diffusion Model?
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Forward Diffusion Process
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Forward Diffusion Process

®Forward (closed-form)
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Reverse Diffusion Process

Reverse Diffusion Process

Markov

Q(mzh’t--- 1)

Noise

L —1 Q(mf—1|ﬂ3t)

impossible!
'q_(mt—l | ®,,20) ?

Do (33:—1|117g) Neural Network

Assume: the output is gaussian
Target Distribution: g(x:_1 | x;) = N (xe—1; pe(x), Ze(x¢))
Approximated Distribution: py(x;—1 | x;) = N (x¢—1; po(xe, t), Lo(x¢, t))



What is g(x:—1 | X, Xo)

e P(IB) = 57
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Summary
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Reverse Diffusion Process

Maximum Likelihood Estimation
Pg(x) Paata(x)

Sample {x1,x?, ..., x™} from Pyqrq (%)

m
We can compute Py (x") "=arg DX 1_[ Pg(x')
?2?2? =

p -> approximated distribution



Maximum Likelihood Estimation

Pdum(x)

Py(x) :
argmax :[[l po (x;)
22 ,
argmax ; log py ()

@Optimization (view 1)
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Diffusion Model with Pytorch

H O3 — A 2 HEZR

AT 88 B IR I H

denoising-diffusion—pytorch

pip install denoising_diffusion_pytorch

minDiffusion

build—with—bombs


https://github.com/cloneofsimo/minDiffusion/tree/master?tab=readme-ov-file
https://github.com/lucidrains/denoising-diffusion-pytorch
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Application 01 —— E14 A j} txt2img

D Bretnimgn | EREE AR (text prompt)
TP AtXt2ime? ™ g

STABLE
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Stable Diffusio(LDM) DALLE 2 By OpenAl



Application 01 —— E|§ A4 LDM

Have a try! Open Source

Stable Diffusion checkpoint
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https://github.com/AUTOMATIC1111/stable-diffusion-webui
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Application 01 —— E14 4 s, LDM
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Application 01 —— E|§ A4 LDM
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Application 01 —— E14 4 s, LDM
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Application 01 —— LDM )i 3

Step 1
Az R BEAIL 1) B

ﬁﬁl ﬁ Predictor
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Application 01 —— E|5 A4 i, DALLE2

Have a tI'Y' API Supported https://platform.openai.com/docs/overview



https://platform.openai.com/docs/overview

Application 01 —— E|5 A4 i, DALLE2

— CLIP objective N img
= ™ [ | encoder
“a corgi -
playing a N
flame L T
throwing = _ L
trumpet 6(5?)0 O H S ¢
— O»()~»
O O B O C
_____________________________________ — —O»()~» __» WO (C
O O —

prior decoder



Application 02 —— LLaDA

3 R H BE DU K S A

What is LLaDA? Large Language Diffusion with mAsking

ISR )
ANT GROUP

A text generation method different from the traditional left-to-right approach



Application 02 —— LLaDA

8512 : Auto Regression

FIR A — - token, #i A i token2 B2 75 K B .
K/ token i A B BT B 7 B A e tokens Talkis Cheap, Show me the Code!

LLaDA Mask i3 BB T diffusion ik 2 8 i 4
Pre-training SFT Sampling
Mask all tokens independently ProArnpt Respf)nse ProAmpt RGSIAJOHSe
f \ f \ f \ f \ t _ 1 -
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Application 02 —— LLaDA

Performance
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Application 03 —— Robotics
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Application 03 —— Robotics

Gaussian Noise 1st iter Denoise Nth iter Denoise

b

TR OV R NI T T
s ST 2 ke Ay
.-#Z-;;.;#: DAL LT

- o’ e r o

Image
Diffusion

Action
Diffusion



Application 03 —— Diffusion Policy
Action Multimodality
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Application 03 —— Diffusion Policy
Action Multimodality
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Application 03 —— Diffusion Policy

Action Space Scalability

O: M Policy M a | single action
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Application 03 —— Diffusion Policy
Training Stability

95 lefu?.lon
Policy

IBC [1]

0.65

Performance

Training Time Checkpoint selection requires
expensive realworld evaluation



Application 03 —— Diffusion Policy

Approach
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