
PWN
Find the Bugs + Exploit them

PWN

CTF, Catch The Flag, 夺旗赛

Pwn 是指攻破设备或者系统，发音类似「砰」

PWN = Find the Bugs + Exploit them

网上课程良莠不齐，我们小组听的是这个短学期
www.ctf.zjusec.com

Kali IDA 女人头

Pwntools 库GDB

Debugger
使用了peda,pwngdb,pwnddbg插件

pwngef 也可以

https://www.philfan.cn/Tools/gdb/ https://www.philfan.cn/CS/CTF-pwn/#pwntools

https://www.philfan.cn/CS/CTF-reverse/
https://www.philfan.cn/Robotics/Environment/S
ystem-kali-settings/

基于Debian的
Linux发行版操作系统

交互式反汇编器
F5反汇编

尽可能容易的编写EXP

Tools 本次作业任务：利用ELF软件漏洞获得系统权限

https://www.philfan.cn/Tools/gdb/
https://www.philfan.cn/CS/CTF-pwn/#pwntools
https://www.philfan.cn/CS/CTF-reverse/#ida
https://www.philfan.cn/Robotics/Environment/System-kali-settings/

GDB

Tools

运行： r, c

单步调试： s, n, si, ni

断点： b <func name>, b *<addr>, bp <addr>, pie b <offset>

查看值： p(rint)/[d/x]

查看内存： x/<count>[b/w/g/s] <addr>, tele(scope) <addr>

程序状态： i(nfo), vmmap, ctx

……
https://www.philfan.cn/Tools/gdb/

https://www.philfan.cn/Tools/gdb/

Pwntools 库

Tools

https://www.philfan.cn/CS/CTF-pwn/#pwntools

环境配置 context

远程连接 p = process(“./bigwork”)

ELF加载 program = ELF(“./bigwork”),
program.got[‘puts’]
program.sym[‘main’]

与GDB配合 p = gdb.debug(“./bigwork”, gdbscript = “c”)（需要安装gdbserver）
pid,p_gdb = gdb.attach(“./bigwork”,gdbscript = “”,api =True) 操作gdb
p_gdb.execute(“info proc mappings”)

交互操作 p.send() p.recvline() p.sendlineafter()

https://www.philfan.cn/CS/CTF-pwn/#pwntools

Checksec —— 做题的第一步

1. No RELRO：意味着全局偏移表（GOT）是
可写的。

2. Canary：存在栈保护机制，这使得栈溢出攻
击更加困难。但如果能够泄露canary值或绕过
canary检查

3. NX：意味着不能直接在栈上执行代码，是否可
以栈溢出注入shellcode

4. PIE：程序没有使用位置独立执行，这意味着
程序的内存布置是否固定的，攻击者可以利用这
个特性更容易地发动基于地址的攻击。

GOT覆盖

栈溢出

Shellcode注入

pwntools附带的命令行工具，用于检查程序开启的保护

第一题
BIGWORK

Pwntools+GDB?

• 跑在远端服务器：
使用WebsocketReflectorX or
Websocat连接

• 一般不给源代码

• 有的给libc ld
BIGWORK

一般的赛题环境 本题

如果遇到问题可以试试 glibc-all-in-one 这个开源项目

S1 返回地址劫持

S2 GOT表劫持

• 先找到puts 的got表位置
• 把函数断在puts前面
• 把got表改掉
• 实现跳转

System 查询GOT表
调用解析

System@got

解析地址

libc

system@plt

解析之后存入
GOT

调用

分为动态链接和静态链接
动态链接会有PLT（查询方法）和GOT（存储地址）表

栈上缓冲区溢出

什么是栈？调用函数中到底发生了什么？

<main+0004> push rbp
<main+0005> mov rbp, rsp
<main+0008> add rsp, 0x80

保护rbp
移动
创建临时变量区域

进入函数时候

出函数的时候

先pop rbp会把当前的rbp位置返回给rsp指针，
实现栈的抬升

ret的时候，先把old rbp返给rbp

并把ret地址返回给运行PC

如何利用
• 当某些函数没有限制读取的长度的时候，可以一直

输入
• 那么就可以构造特殊的payload，让栈上指定位置变

成我们想要的值

读取位置 [rbp-100](使用gdb disasm)

原来的rbp 占 0x8

填入想要覆盖的返回的地址
这里是backdoor

S3 栈溢出

学习路径
如何防御缓冲区溢出呢？

- ASLR
增加随机化地址，增加难度

- Canary
出入栈的时候增加验证的环节

- Shallow Stack:
用微型的buffer存储，临时变量在另
一个栈上面，怎么也不会溢出了

FSB (Format
String Bug)

Printf是如何实现的

• printf是一个比较神奇的函数，

它可以实现变长参数（通过

va_list实现）

• 32位的程序，从右向左依次入栈

• 64位的程序，优先寄存器，前6

个参数放在rdi, rsi, rdx, rcx, r8,

r9，其余的参数放在栈上面

Format String Bug

其输出结果会是 2 1 d c e hello

格式化字符串的数量要大于参数
的数量，这个时候就会发生漏洞

我们可以根据这个漏洞来实现栈
上任意读、任意写

进而配合其他的方法get shell%p 将数据打印为带前导0x的十六进制
$ 指定参数位置。需要计算偏移

%48$p %1$p

%n 将当前已打印的字节数写入指向的内存
%123c%3$n 利用宽度对齐，输入想写入的

任意读

任意写

FSB 任意读
读什么？ 泄露栈上的敏感信息、栈地址、堆地址、程序段地址、libc地址……

如何计算偏移量
 例如：5（栈上的寄存器） + 0x220（左侧的偏移量）/8（8个字节）

FSB 任意写

写什么？ GOT表；返回地址；shellcode泄露；栈上布置参数……

1. 直接写： %ln：写8字节； %12345678c%7$n

2. 按参数进行写入： %*10$c%11$n；把第十个参数作为padding

3. pwntools自带的fmtstr_payload函数：无需自己计算，
 但有时候会被卡常数

任意写：覆盖GOT
from pwn import *
context.log_level = 'warning'
o = process("./test")
elf = ELF("./test")

script = \
 '''
 b printf
 c
 '''
pid,p_gdb = gdb.attach(o,gdbscript = script,api = True)
printf_got = elf.got['printf']
backdoor_addr = elf.symbols['backdoor']
system_addr = elf.symbols['system']
print("printf_got=",hex(printf_got))
print("backdoor_addr=",hex(backdoor_addr))
print("system_addr=",hex(system_addr))

print(o.recv())
o.sendline(b"2")
print(o.recv())
payload = fmtstr_payload(6, {printf_got: system_addr})
o.sendline(payload)
print(o.recv())
o.sendline(b"2")
print(o.recv())
o.sendline(b"/bin/sh\x00")
o.interactive()

使用更加安全的函数
- 使用 snprintf 限制缓冲区长度。
- 使用 strncat 等确保动态字符串拼接的安全性。
增加堆栈保护
gcc -fstack-protector -o program program.c

如何实现防御：

第二题
BIGWORK2

Checksec
• 使用checksec查看可以采取的攻击手段

• 本题开启了Canary和NX保护，因此不能简单的采用栈溢出漏洞进行攻
击。

反汇编查看逻辑

Win函数

这里读取flag.txt

如何跳转到win函数呢？

如何跳转到win函数

review_names 创建额外上下文，
导入星战有关的信息

把review_names数组第v4个元素的值为地址的值赋值为把v5的值作为
地址的值。

尝试这里能否注入？没有exit@GOT 的地址。不能直接修改 exit 对应
的跳转位置。

exit()会依次调用fini_array部分的函数指针，只需将其中
的某个指针替换成win函数即可。

计算fini_array地址和review_name地址的距离

如何跳转到win函数

ROP
利用栈上构造的地址和指令组合（gadget）

完成复杂逻辑

如何满足win的判断条件？

回到win函数，要求
即要求 rdi等于0x6461726B, rsi等于0x73696465

不能直接把fini_array指针修改为win函数地址，但
是可以利用以下这些函数

如何满足win的判断条件？

mov rsi, rdi
xor rdi, rdi
add rdi, 1
shl rdi, 1

有加法和移位→构造任意二进制数
有mov→可以赋值到任意变量

比如说：构造0x8887 的二进制
bin(0x8887)[2:] '1000100010000111'

使用已有的程序片段构造任意的二进制数

攻击过程视频记录
- Fcf-protection
确保程序的执行流严格遵循预
定义路径

- Canary
替换或保护 ret 指令，防止
ROP 攻击的常规利用。

- PIE:
防止攻击者通过堆漏洞劫持控
制流

如何实现防御：

Thanks!

