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d_igm solution:

d_igm[e][1][e]
d_igm[1][3][e]
d_igm[2][5][1]
d_igm[3][7][1]
d_igm[4][9][1]

d_img solution:

d_imr solution:

d_imr[@][@][1]
d_imr[1][@][1]
d_imr[2][1][e]
d_imr[3][1][€]
d_imr[4][1][e]

d_igm solution:

d_igm[e][1][e]
d_igm[1][3][e]
d_igm[2][5][1]
d_igm[3][7][1]
d_igm[4][9][1]

d_imq solution:

d_imqg[e@][@][2]
d_imq[2][1][7]

d_imr solution:

d_imr[1][@][1]
d_imr[3][1][@]
d_imr[4][1][@]




370 .P6060 x solution: y solution: |d_igm solution: | d_img solution:
= 1. yle] = 1. d_iqm|@]|37]|6] = 7.©
y[1] d_igm[1][1e8][6] d_imr solution:
y[2] d_igm[2][131][3] d_imr[@][6][1]
y[3] d_igm[3][97][6] d_imr[1][6]
y[4] d_iqm[4][58][6] j—?:: g%
y[5] d_igm[5][101][6] d—;mp Ale]
y[6] d_igm[6][63][6] = 6.0 |- ]
]
]

Objective value:
Enumerated nodes: 15041
Total iterations: 196911
Time (CPU seconds): 21.53
Time (Wallclock seconds): 21.52

[1]
(]
[1]
[1]
[1]
[1]
[e]

: d imr[5][6
y[7] d_igm[7][141][5] = 12.0 d_imr[6][6

d 1qm[8][4][6] 12.0 7105
16.09 i

Option for printingOptions changed from ni
Total time (CPU seconds): 22.07 (I,

DO ODOODOD OO ® D

y[8]

| { N { Y | | | A | N | S | I | ||

PR R ERERR R RPB R

OO0 OOODOO®®E

Il Il 1l Il ] ll Il ] ||
e R I R

[ N | | Y | A | A | nn

Objective value: 181 0000 = Nilmehidllaa bk il P e
d_igm[1][153][3] = 7.6 _

Enumerated nodes: 214 d_iqm[2][65][6] = 18.8 1t11 - 1 o d_lmr solution:
. V1= 10 I ime[1[3] 6]

Total iterations: 2549 j ?q"‘[i][;iﬂgﬁ]_ lseeey{ﬂ 10 :1mr[2][6][1]
Time (CPU seconds): 1.41 s L DS e
Time (Wallclock seconds): 1.41

6.0
3.0
3.0
6.0
6.0
6.0
3.0

d igm[5][125][3] = 18.ev[4] = 1.0 d_imr[3][6][1]
q 13mE6}%74]%£]]— 12.¢ YI51 = 1.0 d_imr[4][3][e€]
d [7]1[4][6] = 12.0 yiel = 18 o = 2L
_%qm y[7] = 1.e |d_imr[6][3][e]
d_iqm[8][38][6] = 8.0 y[8] = 1.0 _lmr‘[7][5][1]

T T T T T B
P e e e e e e
Q0000000 ®

Option for printingOptions changed from d_igm[9][118][6] = 15.@y[9] = 1.6 |d_imr[8][6][1] = 3.0
Total time (CPU seconds): 1.72 | 2 |d iqeilejf7z]le] 116§H?}2;£ s e
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Exanlple 1 Performance Distribution
3.0 1 i - '

2.5

T
100 105
Fitness Value

Mean: 1065.8 Mean: 164.7
Standard Deviation: 6.896375859826668 Standard Deviation: 7.430343195303969

Best Result: 93 Best Result: 93
Worst Result: 116 Worst Result: 115
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